
R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 1 of 32

R5-COP

Reconfigurable ROS-based Resilient Reasoning Robotic Cooperating
Systems

D35.10: Requirements

Jan Wagner, Sönke Michalik (TUBS), Tadeusz
Dobrowiecki, István Majzik, András Förhécz, István

Engedy, Péter Eredics (BME), Viatcheslav
Tretyakov (SYN)

Project R5-COP Grant agreement no. 621447

Deliverable D35.10 Date 20.02.2015

Contact Person Viatcheslav Tretyakov,
Jan Wagner

Organisation SYN, TUBS

E-Mail vtretyakov@synapticon.com
wagner@c3e.cs.tu-bs.de

Diss. Level PU

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 2 of 32

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 3 of 32

Document History

Ver. Date Changes Author

0.1 12.01.2015 Creation of initial document Viatcheslav Tretyakov (SYN)

0.2 10.02.2015 First batch of TUBS content added Jan Wagner (TUBS)

0.3 29.01.2015 Filling sections x.4-x.5 Tadeusz Dobrowiecki, István
Majzik, András Förhécz, István
Engedy, Péter Eredics (BME)

0.4 16.02.2015 Take over comments from Istvan Jan Wagner (TUBS)

0.5 17.02.2015 Added HW/SW profiling requirements Sönke Michalik (TUBS)

0.6 20.2.2015 Filling in SYN’s sections, general edit-

ing

Viatcheslav Tretyakov (SYN),

Jan Wagner (TUBS)

0.7 20.2.2015 General editing Viatcheslav Tretyakov (SYN),

0.8 09.03.2015 Modifications requested from review Jan Wagner (TUBS)

0.9 09.03.2015 Merged in BME’s review changes Jan Wagner (TUBS)

1.0 12.03.2015 Changes version to 1.0 to make it final Jan Wagner (TUBS)

Note: Filename should be

“R5-COP_D##_#.doc”, e.g. „R5-COP_D91.1_v0.1_TUBS.doc“

Fields are defined as follow

1. Deliverable number *.*

2. Revision number:

 draft version v

 approved a

 version sequence (two digits) *.*

3. Company identification (Partner acronym) *

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 4 of 32

Content

1	 Introduction ... 7	
1.1	 Summary (abstract) ... 7	
1.2	 Purpose of document ... 7	
1.3	 Partners involved ... 7	

2	 Context of the to-be-developed tools ... 8	
2.1	 Soft-error-prone components analysis ... 8	
2.2	 Hardware and hardware/software profiling .. 9	
2.3	 Distributed control software editor ... 10	
2.4	 Configuration tool support .. 10	
2.5	 Skill composer tool ... 10	
2.6	 The use of the Configuration and Skill Composer tools ... 11	

3	 Requirements ... 13	
3.1	 Soft-error-prone components analysis ... 13	
3.2	 Hardware and hardware/software profiling .. 15	
3.3	 Distributed control software editor ... 18	
3.4	 Configuration tool support .. 22	
3.5	 Skill composer tool ... 28	

4	 References ... 32	

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 5 of 32

List of Figures:

Figure 1: Development timeline ... 8	
Figure 2: Hierarchy of task related R5-COP concepts, the project tasks, and the scope of the
decision support tools .. 11	
Figure 3: The functional relation of the Configuration and the Skill Composer Tools 12	

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 6 of 32

List of Acronyms

ABBREV Explanation
DB Data Base
EDA Electronic Design Automation
GUI Graphic User Interface
JTAG Joint Test Action Group (IEEE-Standard 1149.1)
HCI Human Computer Interaction
KB Knowledge Base
OS Operating System
RTL Register Transfer Level
SaaS Software as a Service
SMKB Skill Model Knowledge Base
SoC System-on-Chip
UART Universal Asynchronous Receiver Transmitter

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 7 of 32

1 Introduction

1.1 Summary (abstract)
This document is D35.10 delivery report of the R5-COP project. Work package 35 addresses
several aspects of supporting engineers in their work. Modern industries rely heavily on em-
bedded systems under the assumption these systems are dependable in terms of completing
assigned tasks in a correct and safe way. In order to guarantee this behavior certain proper-
ties of the underlying hardware and the hardware/software interfaces need to be well-known.
The objective of this work package is to design tools, which provide information about crucial
properties of hardware and hardware-software-interaction as early as possible to the design-
er and support him to make the right decisions. This feedback enables designers to design
tailored components which meet the requirements, where especially the early feedback helps
to lower the development costs as well as helps to speed up the design process through
avoiding unnecessary design cycles.
This report contains a description of the context for which each tool is considered and a de-
scription of the planned tool itself. Furthermore the requirements for all tools are collected
within this report.

1.2 Purpose of document
This document is a collection of the requirements for the tools to be created in the context of
work package 35. It contains a survey of the requirements to be fulfilled by the tools and rep-
resents the basis for the upcoming work.

1.3 Partners involved

Partners and Contribution

Short Name Contribution

TUBS Requirements for T35.1, consultation regarding T35.2, T35.3

BME Requirements for Configuration and Skill Composer Tools, 2.4-2.5, 3.4-3.5
DTI No work assigned within the scope of this deliverable

FAU Review

SYN Requirements for T35.2, T35.3

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 8 of 32

2 Context of the to-be-developed tools

Each tool created in WP35 is invented to support the designer or user of a system in a cer-
tain way. This chapter will give an insight into the context in which these tools will aid the
designer to get his work done.

2.1 Soft-error-prone components analysis
Electronic components, especially integrated circuits can fail in different ways. There are
three classes of failures specified: permanent faults, intermittent faults and transient faults,
also known as soft-errors. Soft-errors are caused by radiation. When an alpha particle or
neutron hits a transistor it interacts with the silicon chrystals. Soft-errors do not damage the
circuit, but cause a bit flip somewhere in the circuit, resulting in a wrong outcome of a calcu-
lation or a wrong state of hard- or software. The work done in this task work will only address
soft-errors in System-on-Chips (SoCs).
In task T35.1 techniques shall be investigated which allow to make an estimation of the soft-
error vulnerability of components within a System-on-Chip (SoC) before the actual chip is
produced and even before a RTL model is available, under the assumption that a modern
development strategy is applied.

Figure 1: Development timeline

As shown in Figure 1 every design starts with a collection of requirements. Based on this
collection the specification is build, which is the blueprint for the first sample, including timing
specifications for critical features of the planned chip. Since the creation of a first chip is a
very time consuming process and often the specification unintentionally leaves space for
interpretation the concept of virtual prototypes was introduced. A virtual prototype is de-
scribed in a high-level language and describes the specified functionality plus estimated tim-
ing information for selected actions with a defined accuracy. By disregarding the strong tim-
ing restrictions required in a hardware description and the ability of a high-level description
for most issues a significant time saving could be achieved in creating the virtual platform
compared to a hardware description.
The virtual platform itself can be used as golden-reference for the hardware design since all
ambiguities from the specification need to be clarified during the implementation process.
Moreover software development for the targeted SoC can start as soon as the virtual plat-
form is available as a simulator of the final system.
The techniques proposed for “Soft-error-prone components analysis” are going to start with
the existing virtual platform. At suitable places in the simulator, information about the use of
selected components will be collected, while running the actual software in the simulator.
Based on an analysis of the gathered information it shall clear which components are essen-
tial for the correct function of the SoC.
At the end the virtual prototype will provide information on the functionality of the SoC, the
timing (depending on the targeted and implemented timing accuracy) and on which compo-
nents need special attention regarding soft-error vulnerability (Requirement WP35.1.1). Hav-

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 9 of 32

ing this information available in an early design stage aids the development of safe and relia-
ble systems, which are an indispensable building block of safe robotic systems. Safety in
robotics is an upcoming issue since robots are going to be used real-world environments
allowing direct interaction with humans and the environment. This introduces the risk robots
will hurt humans or cause severe damage to goods and properties, which must be reduced
to a minimum using safe and reliable hardware.
In most cases software is not running bare-metal on a processor, but using an underlying
operating system. Operating system boot up can be a very challenging task in a simulator. It
can take quite a lot of time to perform it, while during this phase no task is performed for
which the system was originally added to the system. Hence the most interesting time-span
regarding reliability is after the system was booted and started executing the actual program
it was designed for. This results in the requirement the proposed techniques need to consid-
er an adequate runtime of the simulator if possible (requirement WP35.1.4).

There are plenty of possible ways to simulate a system. In order to focus on a feasible range
of solutions the choice of the tool needs to be narrowed down.
In recent years SystemC became a very popular simulation framework for simulation in the
EDA community. To support the exchangeability of modules from different vendors TLM
(transaction level modelling) was introduce as a common interface between modules in Sys-
temC simulations. Both techniques are standardized as IEEE1666 [1] and supported by EDA
tool vendors like Cadence, Synopsys or Mentor Graphics. Moreover, there are reference
implementations of SystemC and TLM available as open-source
(http://www.accellera.org/downloads/standards/systemc). The techniques proposed in T35.1
are considered to be compatible with the latest versions of the reference simulator available
when writing this report (SystemC 2.3 and TLM 2.0) (requirement WP35.1.2).
Simulating a whole system makes high demands on the system performing the simulation. A
lot of data is expected to accumulate and not all data can be written immediately to disk.
Hence it needs to be stored, or at least buffered, in the computers main memory. Due to the
fact that 32-bit systems are not able to handle more than 4 GB main memory, a 64-bit oper-
ating system is required in conjunction with at least 8 GB RAM. Linux as operating system is
selected due to good out-of-the-box support of many software libraries and powerful com-
mand-line tools (requirement WP35.1.3)

2.2 Hardware and hardware/software profiling
Efficient implementation of embedded software and hardware is the key contributor to em-
bedded system performance and low power consumption. Therefore, an adequate profiling is
needed to increase the overall system performance and lowering power consumption of
hardware/software co-designs. The profiling will include analysis of execution time, FPGA
logic/BRAM occupation, CPU/memory usage and power consumption.
The investigation of profiling of components oriented towards video and signal processing is
important, since image processing is one of the most resource demanding tasks in robotic
applications.
Hence, the focus of this task lies on profiling of software components and hardware imple-
mented in FPGA on heterogeneous systems combining FPGA and CPU, such as Xilinx Zynq
platforms and development of software.
The processing platform and selected image processing algorithms shall be suitable for
hardware/software implementations and shall feature modular structure and support parti-
tioning.
The platform shall provide interfaces to the ROS middleware, video image sensors and algo-
rithm debugging.
The algorithm implementation shall be aware of available hardware resources.

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 10 of 32

2.3 Distributed control software editor
Developers of distributed control software for embedded systems are facing numerous chal-
lenges. The distributed control software editor will support the designer in creating high quali-
ty software for such systems within reasonable time. But since embedded systems are most
efficient when tailored to a certain use-case, the software cannot be considered without the
hardware. This relationship justifies the demand for a tool helping the designer with creation
of customized, synchronized software and hardware.
Software development for embedded devices always needs to deal with very limited hard-
ware resources, resulting in the need of a well-thought-out software architecture to meet all
requirements defined by the targeted application. Especially embedded control systems have
strong requirements regarding real-time behaviour and correct usage of several external in-
terfaces. Deep knowledge of the underlaying hardware is inevitable to succeed in designing
software for such systems.
The complexity of such systems grows significantly, if the control tasks are not handled by a
single embedded system, but by a network of several embedded systems. Besides the parti-
tioning, which assigns subtasks to certain nodes in the network, a communication infrastruc-
ture needs to be established in hardware as well as in software. Partitioning is considered to
be performed by the designer, but once the hardware architecture and physical links are de-
fined, the distributed control software editor is considered to set up the software architecture
automatically for the given hardware architecture. The generated software setup shall include
the communication infrastructure and stubs for functions where the designer can implement
the actual application.
To sum up, a tool is required taking the description of the hardware architecture as input and
providing a suitable software framework to the designer. Moreover it shall have capabilities
enabling software development, such as a code editor and compiler support.

2.4 Configuration tool support
An application introduces high-level problem and goal dependent requirements. To obtain a
successfully designed (optimal, optimized, robust, etc.) robotic system such abstract re-
quirements must be matched to the available resources producing then realizable software
and hardware requirements. To this end a decision support tool (Configuration tool) will be
developed, demonstrating to the user how his application can be realized as a configuration
(or reconfiguration) of (possibly hierarchical) robotic skills.
Technically the required terminological and relational knowledge will be collected and trans-
formed into formal ontological structures via controlled language interfaces. An ontology-
based core knowledge base covering configurability related notions, capabilities, and metrics
will be developed, coupled to the Skill Model Knowledge Base (SMKB) (to be developed in
WP13). To implement system services reasoning algorithms will be developed around the
overall ontology knowledge base and a small scale prototype decision support system will be
demonstrated, which from the queries to ontologies will find compatible services expressed
as skill configurations and will instantiate them according to the specific information provided
by the system user.

2.5 Skill composer tool
Skill Composer is a decision support tool to create new skills compliant to a skill model used
in R5-COP (Skill Model Knowledge Base (SMKB) defined in WP13), based on available
software component information from SP2. To this end an ontology-based knowledge base
to select both appropriate components for the skill and to add respective semantics to de-
scribe the properties and capabilities of the skill must be developed. The tool will also sup-
port the hierarchical composition of lower-level skills into higher-level skills. Furthermore,
configuration of parameters of the individual skills will be supported.

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 11 of 32

2.6 The use of the Configuration and Skill Composer tools
Configuration and Skill Composer tools complement each other and to obtain a full view of
how an application could be implemented as a robotic system, the services of both of them
are needed, see Figure 2.1
When provided with sufficiently elaborated knowledge bases and algorithms Skill Composer
can provide a software/hardware instantiation of the skill configurations proposed by Configu-
ration tool, which serves as a functional blueprint to fulfil the demands of the application. To
achieve it the skill configurations (output of the Configuration tool) must be passed over (by
the user, or in some other way automatically) to the Skill Composer tool.

Figure 2: Hierarchy of task related R5-COP concepts, the project tasks, and the scope of the

decision support tools

The cooperative maintenance and use of both tools can be roughly decomposed into the
following activities and interactions, see Figure 3:

(1) Embedding Skill Model Knowledge Base (WP13) into the architecture of the Configura-
tion tools. The embodiment can be direct, with the SMKB being a part of the architec-
ture, or indirect making the SMKB a remotely queried resource.

(2) The same remark applies to the Software component/Hardware interface Knowledge
Base to be developed in SP2. Its information must be available to the reasoning algo-
rithms in the Skill Composer. It is however, yet open how it should be solved architectur-
ally.

(3) Application domain knowledge is being brought by the user, who must be qualified
enough not only in the application, but also in questions of acceptable alternatives and
quality measures.

(4) The Query/Answer interface medium to both, the Skill Composer and the Configuration
Tool, must be tailored properly to facilitate the most the influx of the robotic and applica-
tion related information without the burden of handling special IT concepts (representa-
tions) by the user. Possibly, the best will be to use a form structured (limited, controlled)
natural language interface.

(5) The working session between the robot designer and the Configuration tool should con-
clude in a feasible skill configuration. The Configuration tool warrants that the scheme is

1 In Fig 2. as higher order skills are abstractions realized in system software, SW Components are always placed
between them and HW Interfaces to designate the character of the transition between the digital and the ana-
logue system level. In cases when an elementary skill functionality is entirely covered by the HW component, SW
component will mean a simple driving software. In more involved cases, when the function of the hardware must
be backed up by proper algorithm, a SW component will be a (possibly plug-in) fully blown algorithmic module.

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 12 of 32

sound and consistent with the general principles of skill based modelling. User accepting
it indicates that when implemented, it will satisfy his view of the application requirements
(i.e. any later problem can be pin-pointed as user error).

(6) The working session between the robot designer and the Skill Composer tool should
conclude in a feasible skill (configuration) implementation. Skill Composer warrants that
with the proposed software and hardware components the skill can be realized and pro-
vide functions and quality assurances required by the application.

(7) The maintenance of the Configuration tool requires much of knowledge engineering. Skill
models used by the tool to build skill configurations implementing applications must be
verified, extended, edited, modified, etc. at a proper level of expertise (see D13.11). As
this knowledge hardly will be provided by the nominal user - robot designer - another ex-
pert user must be involved to keep the tool operational.

(8) Similar remark applies to the Skill Composer also. Technically the knowledge engineer-
ing covers the same issues of verifying, editing, modifying, etc., however, the scope of
the expert knowledge differs. The knowledge engineer here must draw his knowledge
from interactions with different kind of professionals.

(9) Cooperation between knowledge engineers. It can be the same person skilled in trans-
forming various fields’ knowledge into IT representation, but it could be different. In that
case a strict cooperation is required between them, because the consistency of both de-
cisions must be assured.

(10) Filling input forms is based on the deep knowledge of the application but must be guided
by the tool. The input forms must be arranged hierarchically, and filling of the forms will
be supported by (controlled) natural language to filter out potentially inconsistent user in-
puts.

(11) The question (related to point 9.) is whether it wouldn't be better to fuse (integrate) the
two system functions (application → skill configuration, and skill → software/hardware
configuration) into one tool, providing solution in a single session, or decompose the
problem design into stages. As the mapping from the application to the skill configura-
tion, and also from skill configuration to software/hardware components is one-to-many,
a fused system would have to handle too large search, compromising the quality of the
proposed solution. Decomposition of the process into two stages cuts down the complex-
ity, permits to design better reasoning algorithms, and also frees the user from thinking
across a too large span of abstraction levels. However, then some kind of mechanism
(formalism, representation) to link the data (skill configuration as the output of the Con-
figuration tool and as the input to the Skill Composer) must be designed also to help the
user to transfer the task between both tools.

Figure 3: The functional relation of the Configuration and the Skill Composer Tools

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 13 of 32

3 Requirements

3.1 Soft-error-prone components analysis

Field Name Value

Requirement ID WP35.1.1

Title Statement about soft-error vulnerability of certain components

Description The techniques proposed in T35.1 shall provide the designer of a system
with information on soft-error vulnerability during early design stages.

Rationale Based on the information gathered from running a virtual platform, esti-
mation shall be performed on the vulnerability of certain components.
This gives hints to the designer if design decisions were correct and if
certain components require additional mechanisms in order to comply
with the expectations on the system regarding the soft-error ruggedness.

Importance High

Assigned
Tasks/WPs

T35.1

Partners con-
tributing to this
description

TUBS

Responsibility
and Reference
Person

Jan Wagner (TUBS)

Field Name Value

Requirement ID WP35.1.2

Title Virtual Platform Simulator

Description The techniques reviewed shall be compatible with simulators based on
SystemC 2.3 and TLM 2.0

Rationale Since there are plenty of possible ways to simulate a system a common
foundation for the reviewed techniques needs to be defined. In recent
years SystemC became a very popular simulation framework for simula-
tion in the EDA community. In order to support the exchangeability of
modules from different vendors TLM (transaction level modelling) was
introduced as a common interface. Both techniques are supported by the
EDA tools vendors like Cadence, Synopsys or Mentor Graphics. Moreo-
ver there are reference implementations of SystemC and TLM available
as open-source (http://www.accellera.org/downloads/standards/systemc).
The techniques proposed in T35.1 shall be compatible with the latest ver-
sions of the reference simulator available when writing this report (Sys-
temC 2.3 and TLM 2.0)

Importance High

Assigned
Tasks/WPs

T35.1

Partners con-
tributing to this

TUBS

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 14 of 32

description

Responsibility
and Reference
Person

Jan Wagner (TUBS)

Field Name Value

Requirement ID WP35.1.3

Title Host system

Description The simulation host shall run a 64-bit Linux and provide at least 8 GB
RAM.

Rationale While simulating a whole system a lot of data accumulate. Not all data
can be written immediately to disk, hence it needs to be stored in the
computers main memory. Due to the fact that a 32-bit system is not able
to handle more than 4 GB main memory, a 64-bit OS is required in con-
junction with at least 8 GB RAM. Linux as operating system is selected
due to good out-of-the-box support of many libraries and command-line
tools.

Importance Low

Assigned
Tasks/WPs

T35.1

Partners con-
tributing to this
description

TUBS

Responsibility
and Reference
Person

Jan Wagner (TUBS)

Field Name Value

Requirement ID WP35.1.4

Title Capability to simulate an adequate timespan

Description The observation of a system shall cover an adequate timespan in order to
be capable to make meaningful statements regarding the usage of certain
components.

Rationale If an operating system is involved in the investigation the simulator needs
to run longer than the OS boot up takes plus some time in normal opera-
tion mode. Hence the proposed technique needs to consider the vast
amount of data, which can be produced while running long simulations, if
possible.

Importance Medium

Assigned
Tasks/WPs

T35.1

Partners con-
tributing to this
description

TUBS

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 15 of 32

Responsibility
and Reference
Person

TUBS (Jan Wagner)

3.2 Hardware and hardware/software profiling

Field Name Value

Requirement ID WP35.2.1

Title HW/SW profiling platform

Description The HW/SW profiling platform shall consist of a reconfigurable hardware
(FPGA) partition and a general purpose processor (CPU). Both partitions
shall be able to exchange information through a bus interface or stream-
ing interface.

Rationale To support various HW/SW profiling strategies the platform has to sup-
port algorithm execution in software as well as in dedicated hardware.

Importance High

Assigned
Tasks/WPs

T35.2

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Sönke Michalik

Field Name Value

Requirement ID WP35.2.2

Title HW/SW allocable algorithms

Description Algorithms shall be suitable for HW and SW implementation

Rationale The selected algorithms shall provide features that can be synthesised in
hardware for acceleration in addition to software features that enable su-
perior configuration and modification.

Importance Medium

Assigned
Tasks/WPs

T35.2

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Sönke Michalik

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 16 of 32

Field Name Value

Requirement ID WP35.2.3

Title Modular algorithms

Description Modular algorithms shall be based on pipelined architectures that can be
subdivided in modular components for partitioning and easy adaption.

Rationale The selected algorithms shall provide modular subcomponents that can
be implemented in hardware and/or software.

Importance Medium

Assigned
Tasks/WPs

T35.2

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Sönke Michalik

Field Name Value

Requirement ID WP35.2.4

Title Image Sensor Interface

Description Image Sensor interface shall provide interfaces for High Resolution Vid-
eo/Image capturing as input for image processing algorithms.

Rationale The Sensor interface shall provide a direct and low latency connection to
the processing building blocks. The Image sensors shall be accessible
from hardware and software.

Importance High

Assigned
Tasks/WPs

T35.2

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Sönke Michalik

Field Name Value

Requirement ID WP35.2.5

Title ROS Interface

Description The interface to the robot middleware shall be compatible to ROS mid-
dleware framework:

- ROS message parsing
- ROS publisher/subscriber

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 17 of 32

- Ethernet interface

Rationale The processed data shall be forwarded to the robotic middleware ROS for
easy integration into robotic systems.

Importance High

Assigned
Tasks/WPs

T35.2

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Sönke Michalik

Field Name Value

Requirement ID WP35.2.6

Title Debug Interface

Description The Platform shall provide interfaces for debugging of HW/SW develop-
ment:

- JTAG
- UART
- HDMI (Video/Data-output)

Rationale The results and execution status of the processing algorithms shall be
displayable over debug interfaces.

Importance Low

Assigned
Tasks/WPs

T35.2

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Sönke Michalik

Field Name Value

Requirement ID WP35.2.7

Title Resource aware implementation

Description Algorithm implementation shall be based on performance metrics:
- Execution time
- FPGA logic/BRAM occupation
- CPU/memory usage

Rationale The hardware and software implementation shall be aware of available
resources as memory/FPGA logic resources and processing system ca-

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 18 of 32

pabilities.

Importance Medium

Assigned
Tasks/WPs

T35.2

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Sönke Michalik

3.3 Distributed control software editor

Field Name Value

Requirement ID WP35.3.1

Title Embedded System Editor

Description The distributed control software editor shall enable inexperienced design-
ers to compose an embedded system from predefined building blocks.

Rationale Software for embedded systems always needs to deal with the limited
resources available on such systems. Moreover control software needs to
meet real-time requirements. These requirements can only be fulfilled by
using dedicated hardware components. But also other features of em-
bedded systems, such as many interfaces to external devices, rely on the
close interaction of hard- and software. Hence a deep knowledge of the
underlaying hardware is necessary during the software design process.
The hardware architecture description of the embedded system needs to
be provided to the distributed control software editor. As interface be-
tween designer and distributed software control editor the embedded sys-
tem editor is required.

Importance High

Assigned
Tasks/WPs

T35.3

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Jan Wagner

Field Name Value

Requirement ID WP35.3.2

Title OS-agnostic

Description The distributed control software editor shall run on multiple operating sys-

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 19 of 32

tems to be compatible with the preferred OS of the customer.

Rationale Customers usally have their own well tested workflow. The distributed
control software editor is considered to be integrated in this workflow
without hassles like requiring a certain operating system or extraordinary
libraries. Hence it shall follow an OS-agnostic approach, such as using
Java or Python or even without any extra software on the customer’s
computer as a Software-as-a-Service (SaaS) application running in a web
browser.

Importance Medium

Assigned
Tasks/WPs

T35.3

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Jan Wagner

Field Name Value

Requirement ID WP35.3.3

Title Software framework generator

Description The distributed control software editor shall generate a fully operational
software framework based on the created embedded system architecture.

Rationale The distributed control software editor is intended to support the designer
in creating applications for a specific embedded system. This requires
code making the hardware layer usable to the software. This includes
defining which software part is executed on which processor and initiali-
sation of all hardware drivers. To free the designer from the burden of
typing in a lot of boilerplate code at the beginning of such a project an
initial code framework shall be generated based on the hardware descrip-
tion generated with the Embedded System Editor (requirement
WP35.3.1)

Importance High

Assigned
Tasks/WPs

T35.3

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Jan Wagner

Field Name Value

Requirement ID WP35.3.4

Title Source code editor

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 20 of 32

Description The Distributed control software editor shall enable the customer to de-
velop the whole application code. Hence a source code editor is manda-
tory.

Rationale Editing source code is an inevitable feature of the distributed control soft-
ware editor. Hence it shall support the designer with features for effective
code editing, such as syntax highlighting.

Importance High

Assigned
Tasks/WPs

T35.3

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Jan Wagner

Field Name Value

Requirement ID WP35.3.5

Title Compiler tools

Description All required compilers shall be accessible from the distributed control
software editor.

Rationale The distributed control software editor is planned as the central tool to
create applications for the targeted embedded systems. This includes
giving feedback to the designer if the source code is valid and providing
binary executable files generated from the source code.

Importance Medium

Assigned
Tasks/WPs

T35.3

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Jan Wagner

Field Name Value

Requirement ID WP35.3.6

Title Sanity checks

Description The distributed control software editor shall perform sanity checks during
the design process and guide the customer to a realizable and sensible
design.

Rationale The designer of an embedded system shall get feedback regarding the
correctness of his design as quick as possible. The sanity check shall
warn the designer for example if more devices are connected to a CPU

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 21 of 32

than interfaces are available. This enables the designer to adapt the sys-
tem in an early design stage, avoiding an expensive redesign at later de-
sign stages.

Importance Medium

Assigned
Tasks/WPs

T35.3

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Jan Wagner

Field Name Value

Requirement ID WP35.3.7

Title Common robotic interface support

Description The distributed control software editor shall support robotic control appli-
cations.

Rationale Since robotic application are the main target for the distributed control
software editor, the most frequently used interfaces in the robotic domain
shall be supported. A survey on these interfaces can be found in deliver-
able D23.11 Component interfaces.

Importance Medium

Assigned
Tasks/WPs

T35.3

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Jan Wagner

Field Name Value

Requirement ID WP35.3.8

Title Backend to the vendor

Description The distributed control software editor shall enable the user to send his
design to the vendor.

Rationale In order to establish easy collaboration between the customer and the
vendor of embedded systems, the distributed control software editor shall
provide support for easy data exchange.

Importance Low

Assigned
Tasks/WPs

T35.3

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 22 of 32

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Jan Wagner

Field Name Value

Requirement ID WP35.3.9

Title Interoperability

Description The distributed control software editor shall be able to cooperate with
other software development tools.

Rationale As aforementioned every customer has already a well proven workflow
established, including reusable source code. In order to foster the migra-
tion from existing software projects to the distributed control software edi-
tor an import of projects from tools like eclipse shall be considered.

Importance Low

Assigned
Tasks/WPs

T35.3

Partners con-
tributing to this
description

SYN, TUBS

Responsibility
and Reference
Person

Viatcheslav Tretyakov, Jan Wagner

3.4 Configuration tool support

Field Name Value

Requirement ID WP35.4.1

Title (goal) Skill configuration design for an application (without user constraints)

Description

Actors User (C - Client), Configuration tool (S)

Description C enters an application description, S proposes a configu-
ration of skills functionally implementing the application.

Preconditions C has an access permission or an account in the system.
C can handle (understand) the HCI specification.
C has suitably deep knowledge of the application.

Postconditions C receives skill configuration for his application.
S prepares an internal case representation of application-
skill configuration (optional: case representation is stored

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 23 of 32

in case DB).

Normal Flow 1. C fills in initial query forms about application (high level
data).
2. S helps C to fill the forms by guiding queries with con-
trolled natural language prompts.
3. S evaluates the input information and computes what
next forms (and guiding information) are to be presented
to C. Back to 1.
4. S compiles the provided information into an internal
application representation and performs reasoning to find
out compatible skill configurations.
5. S presents pre-selected configurations to C.
6. C selects a configuration for usage.
7. S outputs the case configuration (application + configu-
ration) to C.
8. S stores case information in a case database.

Alternative
Flow

In 6. C selects more configurations.
In 7. C asks S to output more case configurations and
provides tags for them.
In 7. C asks for a summary about the proposed configura-
tion listing e.g. required resources (sensors, actuators),
conditions, etc.

Exceptions C entry refused.
C cannot answer essential questions posed by the tool.
S cannot provide skill configuration due to miss-
ing/inconsistent items in its knowledge base.
S cannot provide skill configuration due to faulty reason-
ing.

Rationale Basic activity between the application user and the tool. Any other applica-
tion related interaction is a variant of it.

Importance High (When performed without problems, the functional skeleton of the
robotic system is provided.)

Assigned
Tasks/WPs

T35.4/WP35

Partners con-
tributing to this
description

Tadeusz Dobrowiecki, István Majzik, András Förhécz (BME)

Responsibility
and Reference
Person

Tadeusz Dobrowiecki (BME)

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 24 of 32

Field Name Value

Requirement ID WP35.4.2

Title (goal) Skill configuration design for an application with user constraints

Description

Actors User (C - Client), Configuration Tool (S)

Description C delivers an application description with some implemen-
tation constraints (type of robot, sensors/actuators
YES/NO, quality measures, etc.) and S proposes a skill
configuration with qualifications.

Preconditions C has access permission or an account in the tool.
C can handle (understand) the HCI specification.
C has suitably deep knowledge of the application.

Postconditions C receives skill configuration for his application or expla-
nation why it is not possible.
S prepares an internal case representation of application-
skill configuration (optional: case representation is stored
in case DB).

Normal Flow 1. C fills-in Query forms about application (high level data)
involving constraints.
2. S helps C to fill the forms by guiding queries with con-
trolled natural language prompts.
3. S evaluates the input information and computes what
next forms (and guiding information) to present to C. Back
to 1.
4. S compiles the provided information into an internal
application representation and performs reasoning to find
out compatible skill configurations.
5a. S presents pre-selected configurations to C, or
5b. S presents explanation why no skill configuration is
feasible.2
6. C selects a configuration for usage.
7. S outputs the case configuration (application + configu-
ration) to C.
8. S stores case information in a case data base.

Alternative
Flow

In 6. C selects more configurations.
In 6. (after 5b.) C asks which constraints, or application
properties are critical to the skill configuring.
In 7. C asks S to output more case configurations and
provides tags for them.
In 7. C asks for a summary about the proposed configura-

2 E.g. if application calls for covering distances and doing task underwater AND in the air, and the user stipulates
to have a single robotic system, pairing underwater swimming AND flying skills, although theoretically possible, is
practically not feasible.

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 25 of 32

tion listing e.g. required resources (sensors, actuators),
conditions, etc.

Exceptions C entry refused.
C cannot answer essential questions posed by the tool.
S cannot provide skill configuration due to miss-
ing/inconsistent items in its knowledge base.
S cannot qualify selectively the explanation about configu-
ration problems (lack of deeper knowledge).
S cannot provide skill configuration due to faulty reason-
ing.

Rationale User always has in mind some particulars about the designed system.
Taking them early into account further limits the search space and makes
it easier to find good implementation platform.

Importance High (When performed without problems, a better-balanced functional
skeleton of the robotic system is provided.)

Assigned
Tasks/WPs

T35.4/WP35

Partners con-
tributing to this
description

Tadeusz Dobrowiecki, István Majzik, András Förhécz (BME)

Responsibility
and Reference
Person

Tadeusz Dobrowiecki (BME)

Field Name Value

Requirement ID WP35.4.3

Title (goal) Reconfiguring skill configuration for a modified application (with us-
er constraints)

Description

Actors User (C - Client), Configuration tool (S)

Description C used the Configuration and Skill Composer Tools earlier,
re-evaluated his requirements and problem definition and
now brings a modified description of the application (and/or
modified constraints). S proposes a new (re)configuration
of skills.

Preconditions C has an access permission or an account in the tool.
C can handle (understand) the HCI specification.
C has suitably deep knowledge of the application and the
modifications to the applications.
C recalls the ID of the application configuration (earlier).

Postconditions C obtains skill configuration for the modified application or

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 26 of 32

explanation why it is not possible.
S prepares an internal case representation of application-
skill configuration (optional: case representation is stored in
case DB).

Normal Flow 1. C enters the ID of the earlier configuration.
2. S presents the Query entry forms filled in with the case
data.
2. S helps C to update the forms acc. to the application
modifications, by guiding queries with controlled natural
language prompts.
3. (optional) S evaluates the input information and com-
putes what next forms (and guiding information) to present
to C. Back to 2.
4. S compiles the input information and performs case
based (incremental) reasoning to find out how the original
skill configuration (or configurations) should be modified to
accommodate changes in the application or constraints.
5a. S presents pre-selected configurations to C, or
5b. S presents explanation why no skill configuration is
feasible.
6. C selects a configuration for usage.
7. S outputs the case configuration (application + configu-
ration) to C.
8. S stores case information in a case data base.

Alternative
Flow

In 6. C selects more configurations.
In 6. (after 5b.) C asks which constraints, or application
properties are critical to the skill configuring.
In 7. C asks S to output more case configurations and pro-
vides tags for them.
In 7. C asks for a summary about the proposed configura-
tion listing e.g. required resources (sensors, actuators),
conditions, etc.

Exceptions C entry refused.
C cannot answer essential questions posed by the tool.
S cannot provide skill configuration due to miss-
ing/inconsistent items in its knowledge base.
S cannot qualify selectively the explanation about configu-
ration problems (lack of deeper knowledge).
S cannot provide skill configuration due to faulty reasoning.

Rationale Specification of an application can change after configuration has been
computed (e.g. as a reaction to the poor configurability). If the new (modi-
fied) application differs little from the original one, the skill configuration
could be modified without complex computations.

Importance High (Modifying applications belongs to the basic system designing strate-
gies, and as such should be supported without fears of excessive compu-
tations.)

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 27 of 32

Assigned
Tasks/WPs

T35.4/WP35

Partners con-
tributing to this
description

Tadeusz Dobrowiecki, István Majzik, András Förhécz (BME)

Responsibility
and Reference
Person

Tadeusz Dobrowiecki (BME)

Field Name Value

Requirement ID WP35.4.4

Title (goal) Knowledge engineering - introducing new / modifying old skills in the
Configuration tool

Description

Actors User (C - Knowledge Engineer), Configuration tool (S)

Description C is approached by application domain experts asking to
expand/modify the scope of configured knowledge repre-
sented by the tool. C analyses the new knowledge in
terms of concepts and relations used in the tool and via a
special maintenance GUI introduces the new knowledge in
the correct places in the knowledge base data structures.
C runs suitable verification procedures to assure the con-
sistency of the extended/modified knowledge base.

Preconditions C has an advanced access permission to the tool.
C can handle (understand) the application domain prob-
lem.
C has suitable knowledge of the tool’s inner functions.
C has suitable knowledge of the tool maintenance GUI.

Postconditions S is equipped with extended/modified and consistent con-
figuration knowledge (knowledge representation structures
to run reasoning and additional data to maintain the dia-
logue with the user).

Normal Flow 1. C is ready with the analysis of the application demands
(his decision: to expand, to modify).
2. C uses the maintenance GUI to identify the place of
modification to the knowledge structures.
3. C uses the maintenance GUI to enter the modification
and related descriptions.
4. C makes a choice of knowledge base maintenance al-
gorithms to run.
5. C acknowledges the changes to the knowledge base
and exits.

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 28 of 32

Alternative
Flow

In 4. S indicates that some descriptors related to the new
piece of knowledge are not filled-in with information (mak-
ing future configuration reasoning impossible). Go to 3.
In 4. In case when modification means structural change,
or deletion, S indicates that some other con-
cepts/relations/entities are to be deleted, lacking ontologi-
cal support.

Exceptions C entry refused.
C is professionally inapt to maintain the knowledge base
(poor understanding of the domain and the S).
C cannot answer essential questions posed by the tool.
C did not answer essential questions posed by the tool.
C did not run verification reasoning on the modified
knowledge base.
S cannot verify knowledge base due to faulty reasoning.

Rationale Quality of service of decision support systems always depends on the
proper maintenance of the knowledge bases: introducing new knowledge
items expressing new technology and theory, and modifying knowledge
items found faulty in the earlier system sessions.

Importance Medium (Proper knowledge-level maintenance increases the useful ser-
vice lifespan and versatility of an information system.)

Assigned
Tasks/WPs

T35.4/WP35

Partners con-
tributing to this
description

Tadeusz Dobrowiecki, István Majzik, András Förhécz (BME)

Responsibility
and Reference
Person

Tadeusz Dobrowiecki (BME)

3.5 Skill composer tool

Field Name Value

Requirement ID WP35.5.1

Title (goal) Knowledge engineering - introducing new / modifying old skill com-
positions (software/hardware modules) in the Skill Composer tool

Description

Actors User (C - Knowledge Engineer), Skill Composer tool (S)

Description C is approached by technology experts with new/modified
options for the software/hardware modules. C analyses
the newly available functionalities from the point of view of

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 29 of 32

implementing skills and via a special maintenance GUI
introduces the new knowledge in the correct places in the
knowledge base data structures. C runs suitable verifica-
tion procedures to assure the consistency of the modified
knowledge base.

Preconditions C has an advanced access permission to the tool.
C can handle (understand) the software/hardware compo-
nent descriptions.
C has suitable knowledge of the tool’s inner functions.
C has suitable knowledge of the tool maintenance GUI.

Postconditions S is equipped with extended/modified and consistent
component knowledge.

Normal Flow 1. C is ready with the analysis of the newly presented
software and hardware options.
2. C uses the maintenance GUI to identify the place of
introducing the options to the tool knowledge base (KB).
3. C uses the maintenance GUI to enter the options and
the related skill configuring descriptions.
4. C makes a choice of KB maintenance algorithms to run.
5. C acknowledges the changes to the KB and exits.

Alternative
Flow

In 3. If modifications include deleting items, and there is
pre-prepared skill configuration data base, then the data
base is recursively screened for consistency. Go to 4.

Exceptions C entry refused.
C is professionally inapt to maintain the knowledge base
(poor understanding of the domain and the S).
C cannot answer essential questions posed by the tool.
C did not answer essential questions posed by the tool.
C did not run verification reasoning on the modified
knowledge base.
S cannot verify knowledge base due to faulty reasoning.

Rationale Quality of service of decision support systems always depends on the
proper maintenance of the KB: introducing new knowledge items express-
ing new technology and theory, and modifying knowledge items found
faulty in the earlier system sessions.

Importance Medium (Proper knowledge-level maintenance increases the useful ser-
vice lifespan and versatility of an information system.)

Assigned
Tasks/WPs

T35.4/WP35

Partners con-
tributing to this
description

Tadeusz Dobrowiecki, István Majzik, András Förhécz (BME)

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 30 of 32

Responsibility
and Reference
Person

István Majzik (BME)

Field Name Value

Requirement ID WP35.5.2

Title (goal) Designing skill implementations (with user constraints)

Description

Actors User (C - Client), Skill Composer tool(S)

Description C used the Configuration Tool earlier, evaluated his appli-
cation requirements and now has a candidate skill configu-
ration. Using Skill Composer C asks for skill implementa-
tions at different levels of detail (providing optional imple-
mentation constraints). S proposes software/hardware
implementation of skills.

Preconditions C has an access permission or an account in the tool.
C can handle (understand) the HCI specification.
C has suitably deep knowledge of skill implementation
with software and hardware components to maintain a
dialogue with S.

Postconditions C obtains skill implementation proposal in terms of soft-
ware and hardware components, or an explanation why it
is not possible.
S prepares an internal representation of the skill imple-
mentation.

Normal Flow 1. C enters the skill implementation session.
2. S presents the query entry forms to be filled in with the
skill data.
3. S helps C to update the forms, by guiding queries with
controlled natural language prompts.
4. S compiles the input information and performs case
based (incremental) reasoning to find out how the queried
skill can be implemented with software or hardware com-
ponents, taken into account user constraints.3
5a. S presents skill composition to C, or
5b. S presents explanation why no skill composition is
feasible.
6. S stores case information in a case data base.
7. C asks for next skill implementation, go to 2.
8. C asks for a summary about the proposed implementa-
tion.

3 E.g. that particular function must be implemented in software, or that a particular function should be implement-
ed in hardware, if available.

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 31 of 32

Alternative
Flow

In 2. C passes to S the full skill configuration description
obtained from the Configuration tool. C selects one of the
skills in the configuration to investigate.
In 3. C adds constraints on skill implementations applica-
ble to the full skill configuration.4
In 6. (after 5b.) C asks which constraints, or application
properties are critical to the skill implementation.
In 7. C asks S to release some of the constraints.
In 8. C asks for a summary about the implementation of
the whole skill configuration listing required components
and demanded and released constraints.

Exceptions C entry refused.
C cannot answer essential questions posed by the tool.
S cannot provide skill implementation due to miss-
ing/inconsistent items in its knowledge base.
S cannot qualify selectively the explanation about imple-
mentation problems (lack of deeper knowledge).
S cannot provide skill implementation due to faulty reason-
ing.

Rationale A number of robotic skills (skill configurations) can be implemented with
various available software and hardware components leading to a situa-
tion where a number of redundant solutions can be qualified from second-
ary (however important) points of view. It is important to have a decision
support tool which could present alternatives and could vary alternatives
adaptively according to user demands.

Importance High (With Configuration and Skill Composer tools equipped with appro-
priately developed KB and reasoning the designer of the robotic system
can do a fast and cheap test whether his conception of the solution is
sound, or how to make it sound, respectively.)

Assigned
Tasks/WPs

T35.4/WP35

Partners con-
tributing to this
description

Tadeusz Dobrowiecki, István Majzik, András Förhécz (BME)

Responsibility
and Reference
Person

István Majzik (BME)

4 E.g. that the number of hardware components should be minimized, or that asynchronous skills can share im-
plementations.

ARTEMIS-2013-1 R5-COP

R5-COP_D35.10_v1.0_TUBS.doc © R5-COP consortium Page 32 of 32

4 References

[1] IEEE Standard for Standard SystemC Language Reference Manual (IEEE Std
1666-2011), IEEE, 9th January 2012

