
Reconfigurable ROS-based Resilient Reasoning Robotic Cooperating Systems

R5-COP
Reconfigurable ROS-based Resilient Reasoning Robotic

Cooperating Systems

Middleware Assessment (initial)

Viatcheslav Tretyakov, Nikolai Ensslen (SYN),
Sönke Michalik, Jan Wagner, Rainer Buchty (TUBS)

Project R5-COP Grant Agreement # 621447

Deliverable # D31.11 Dissemination Level PU

Contact Person Viatcheslav Tretyakov Organization SYN

E-Mail vtretyakov@synapticon.com Date 27.02.2015

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

Document History

Document History

Ver. Date Changes Author

0.1 29.01.2015 Initial document creation Viatcheslav Tretyakov

0.2 26.01.2015 First batch of metrics added Viatcheslav Tretyakov

0.3 02.02.2015 More metrics added Viatcheslav Tretyakov

0.4 11.02.2015 Input added Sönke Michalik

0.5 17.02.2015 Editing document Jan Wagner

0.9 24.02.2015 Formatting, Typesetting Rainer Buchty, Jan Wag-
ner

1.0 01.03.2015 Input added Sönke Michalik

1.1 10.03.2015 Modifications requested from review Sönke Michalik

Note: Filename should be
“R5-COP_D##_#.pdf”, e.g. „R5-COP_D91.1_v0.1_TUBS.pdf“

Fields are defined as follows

1. Deliverable number *.*

2. Revision number (should not be required with LaTeX ... use versioning!)

• draft version v

• approved a

• version sequence (two digits) *.*

3. Company identification (Partner acronym) *

Deliverable D31.11: Page 2 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

Table of Contents

Cover page 1

Document History 2

Table of Contents 3

List of Figures 4

List of Tables 5

List of Acronyms 6

1 Introduction 7
1.1 Summary (abstract) . 7
1.2 Purpose of this document . 8
1.3 Partners involved . 8

2 Middleware Assessment Metrics 9
2.1 Modularity . 9

2.1.1 Node Communication Mechanisms . 9
2.2 Composability . 10

2.2.1 Message Transport Protocol . 10
2.2.2 Programming languages . 11
2.2.3 Communication Services . 11
2.2.4 Simulation Capabilities . 12

2.3 Configurability . 13
2.3.1 Message format . 13

2.4 Real-time capability . 13
2.5 Stability . 13

2.5.1 Host OS . 13
2.6 Reusability . 14

2.6.1 Algorithm library . 14
2.6.2 License . 14

2.7 Scalability . 14
2.7.1 Distribution . 14

3 Summary of Middleware Assessment Metrics 16
3.1 Assessment Metrics . 16

Deliverable D31.11: Page 3 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

List of Figures

1 Middleware Assessment Metrics . 9
2 ROS node configuration . 15

Deliverable D31.11: Page 4 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

List of Tables

Deliverable D31.11: Page 5 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

List of Acronyms

Abbreviation stands for
µC/OSII real-time deterministic multitasking kernel for microprocessors

API Application Programming Interface

BSD Berkeley Software Distribution License

CAN Controller Area Network

CORBA Common Object Request Broker Architecture

EtherCAT Ethernet for Control Automation Technology

GPL General Public License

HAL Hardware Abstraction Layer

HTTP Hypertext Transfer Protocol

LGPL "Lesser" General Public License

MARS Multi-Agent Robotic Systems

MAS Multi-Agent systems

RDF Resource Description Framework

ROS Robot Operating System

RSF Robotic Software Framework

RTAI Real Time Application Interface

RTLinux Real-time Linux

SLAM Simultaneous Localization and Mapping

SSL Secure Sockets Layer

TCP Transmission Control Protocol

UDP User Datagram Protocol

XML Extensible Markup Language

Deliverable D31.11: Page 6 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

1 Introduction

1.1 Summary (abstract)

Robotic systems require significant interaction and coordination of hardware and software elements. In
the context of software engineering, the concept of middleware earned a very strong role in the entire
software development process. In robotic applications the use of a middleware can help improving the
organization, the maintainability and the efficiency of the code that controls the robot.

Robotic systems are usually complex systems built on many different hardware and software compo-
nents, as sensors and actuators as well as planners and control algorithms. In general, on each robot runs
a software that is responsible for reading sensors data, extracting the needed informations from them,
computing the sequence of actions to accomplish a given task and controlling the actuators to execute
the actions. Using a custom approach, there will be a single monolithic application that will handle
all these tasks, making code maintenance hard and preventing every form of code reuse and sharing
between different projects. Such a scenario, with many hardware and software components that needs
to communicate and collaborate to reach a goal, is exactly where a middleware can help improving the
organization, the maintainability and the efficiency of the code. The whole application can be structured
into many little concern separated tasks, as ”get a sensor reading”, ”extract features from some data”,
”drive the motors to some speed”. Different components can exchange data using a common com-
munication channel provided by the middleware, using interfaces that are consistent between different
applications. In this way, it becomes really easy to share and reuse code among different projects, or
change an algorithm to get some functionality as it is only necessary to keep the same interface. As an
example, if you need to switch from a proximity sensor to another, it is possible to write a new com-
ponent that share the same interface and update it without modifying the rest of the application. This
concept can be extended to large and complex applications, in which using a middleware can clearly
improve the overall code organization and reduce the programming effort.

Why use middleware?

Middleware is useful for a number of reasons when designing large, distributed systems. Some relevant
aspects:

• Portability: middleware offers a common programming model across programming language
and/or platform boundaries, as well as across distributed systems by providing a uniform commu-
nication API. Thanks to this, it is possible to make cooperative applications developed in different
languages (e.g. Java and C++) and executed on different operating systems (e.g. Windows and
Linux) without any specific effort by the programmer.

• Reliability: middlewares are developed and tested separately from the final application. This
allow the application programmer to abstract low-level aspects and use (and re-use) a well-tested
library.

• Managing complexity: low-level aspects could be managed by suitable libraries that abstract
specific operating system or hardware aspects. This simplifies development and reduces the prob-
ability of errors.

Deliverable D31.11: Page 7 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

1.2 Purpose of this document

D31.11 will show metrics and criteria to quantitatively assess middlewares. Aspects like modularity,
composability, configurability, reusability, real-time capability, scalability and stability will be consid-
ered.

1.3 Partners involved

Partners and Contribution

Short Name Contribution

SYN Main contributor to this report

TUBS Consulting

Deliverable D31.11: Page 8 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

2 Middleware Assessment Metrics

To assess middlewares in terms of modularity, composability, configurability, reusability, real-time ca-
pability, scalability and stability it is required to define a range of specific metrics.

Figure 1: Middleware Assessment Metrics

The assessment shall consider the special requirements on middleware frameworks for industrial appli-
cations and embedded systems.

2.1 Modularity

Modularity is the key aspect to enable the application of the divide-and-conquer paradigm. Following the
divide-and-conquer paradigm means breaking down a complex problem into two or more sub-problems
until the sub-problems become simple enough to be solved. In the robotic domain it means simple tasks
are mapped onto nodes which represent the building blocks for more sophisticated functionality. The
middleware should facilitate the creation of sophisticated features by providing a feasible communica-
tion infrastructure.

2.1.1 Node Communication Mechanisms

The node communication mechanisms can differ in range of simple message passing between nodes
to more advanced mechanisms such as ports, topics, events, services and properties. The communica-
tion mechanisms will influence the coupling of nodes, performance and ease of use of the middleware
framework.

• Simple message: This is the simplest mechanism, and is a one-to-one communication where a
node sends an asynchronous message and another node receives it. It is the most basic communi-
cation mechanism, from which all the other mechanisms are derived. The messages also tend to
include metadata about the message, such as the intention, content format, and content ontology.

Deliverable D31.11: Page 9 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

• Ports: These are mechanisms that allow nodes to communicate with a low degree of coupling. The
nodes are made up of two types of ports: in-ports and out-ports. These ports can be interconnected
with another port through one or several connections (one-to-many). They can be created and
destroyed dynamically, which introduces great flexibility. Each node is designed to read and to
write in its ports in-dependently of which node is connected in execution. The messages are
usually stored in buffers in the in-ports and out-ports. The messages can be read by the receiver
in two ways: by checking the state of the buffers and collecting new messages (polling) or by
asynchronous method invocation (callback).

• Topics: This is an asynchronous communication mechanism that follows the Publish/Subscribe
model and allows a many-to-many communication to be made whilst maintaining low coupling.
A topic represents a centralized channel where all the nodes connected to it receive any message
that is sent by a node. This channel represents logic centralization; that does not imply a bus at
the transport level. This logic bus could be implemented by various means in the transport layer,
for example, by means of multiple point-to-point connections in an Ethernet network and TCP/IP,
or, a physical bus type connection in a CAN network.

In many aspects topics are similar to ports, nevertheless one of the main differences is that a topic
does not pertain to any node, but events. These are one-to-many asynchronous communication
mechanisms that allow a low degree of coupling to be maintained between nodes. They are also
known as the observable/observer patterns. The emitting node emits messages to all the subscribed
nodes, which, although very similar to the ports mechanism, differs mainly in that: the connection
concept does not exist; an event is implicitly asynchronous; and the subscribed nodes always deal
with events by means of callbacks.

• Services: This is a communication mechanism that allows the remote execution of a procedure;
the remote procedure call (RPC). Two messages come into play: Request and Response. The
message request is sent by the client node and indicates what procedure is desired to be executed
and its arguments. The Response message is sent by the server node with the result of the opera-
tion. It is a typically synchronous procedure where the client remains blocked while the response
is awaited.

• Data/message centric communication: The communication of an middleware framework can
be splitted into message and data centric transfers. In robotic system with high amount of data
transfers (e.g image data) it can be usefull to send data packages seperatly.

2.2 Composability

The composability of an middleware framework in terms of compatible protocols, programming lan-
guages or services is an important aspect since it affects its flexibility and versatility. The interfacing
capabilities to other processing systems in a robotic environment is essential for most robotic applica-
tions. Also the simulation capabilities are an critrion to select a prober middleware framework.

2.2.1 Message Transport Protocol

The message transport protocol is a crucial characteristic of middleware frameworks that is also related
to the communication layer. The supported transport protocols like TCP, UDP, EtherCat, CAN-open,
HTTP, SSL, CORBA will significantly change the performance of the middleware framework.

Deliverable D31.11: Page 10 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

2.2.2 Programming languages

A middleware framework can support one or multiple programming languages. On one hand the used
programing language can directly influence the performance of the robotic system and should be selected
to match the operation platform performance. On the other hand it directly influences the time required
to create new software components.

The greater the number of supported languages, the more flexibility is contributed to development, which
in turn results in more libraries and projects that can be reused. The language employed brings ma-
jor consequences on performance, the real-time capabilities, the transport mechanism, and some agent
capacities, such as mobility. The most widely accepted language in robotics application frameworks
is C/C++ since it offers a good balance between the access to devices, sensors and actuators at low
level, while still offering a sufficient level of abstraction to create complex distributed system architec-
tures. This means that it presents an adequate language for both low-level control tasks and high-level
program-ming. On the other hand, many algorithms in robotics deal with problems with a high level
of abstraction which is why it is also recommended that the system support high-level languages such
as Java, Python or MATLAB. Nevertheless, most platforms tend to offer a wider range of languages, to
prevent programming language restrictions to be an application barrier when deploying robotic systems.

2.2.3 Communication Services

Services are used to coordinate the communication between nodes. Naming Services, Lookup Services,
Discovery Services provide features to set up the data transfer.

Naming service

This is a global service typical in hybrid P2P architectures, otherwise known as the White Pages ser-
vice, which allows the localization of nodes, and other global system resources such as topics, from
a name. Specific node resources, such as ports, properties, services and events, seldom have a global
name managed by the naming service. Generally, the middleware framework provide naming-service
mechanisms. Some middleware frameworks have characteristics of a more advanced nature such as
“Name Pushing” and the relative addressing of agents or resources of the system. These mechanisms
are crucial for the prevention of name conflicts when nodes are instantiated in different spheres of the
system. In this case although they can both have the same code, they are in different contexts, which is
why a relative name references different agents or resources. These complementary mechanisms related
to the naming service boost the flexibility of the resources that can be referenced:

• Renaming (Remapping): During deployment, this mechanism allows all the references that exist
in the logic of a node of the system resources (nodes, topics, services, etc.) to be substituted by
others. It is highly useful in obtaining the correct integration of modules. For example, if two
modules implemented by different development teams were designed to read and write in a topic,
and each team chose a different name for the topic, neither node would manage to communicate.
The problem becomes more complicated when more modules are involved. There are two solu-
tions to this problem: change the implementation and change the name of the affected topics; or
use the renaming mechanism, which allows the final value of the deployment configuration to be
kept in a file which will take the references to the system resources. This last solution is called
Renaming when it is a built-in feature of the RSF.

• Relative and absolute naming (Namespaces): This is the capacity to represent hierarchies in
the names. It allows the code of a node to be referenced by other resources in an absolute manner

Deliverable D31.11: Page 11 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

(namespace + name) or a relative manner (name). It is an important tool for creating an organized
design and clean code. It is mainly useful when it is used in conjunction with Name Pushing.

• Name pushing: This is a particular form of renaming. It is a mechanism that allows a group
of resources (nodes, topics, etc.) to be instantiated in a specific namespace at the moment of
deployment. This mechanism allows conflicts in the resource names to be prevented. When name
pushing is carried out, the interconnections of the nodes can change, since all the references to
resources with relative names will only be sought in the present namespace, whereas the absolute
references to resources will remain unaffected by name pushing and will continue to be referenced
to the same resources.

Lookup service

This service is peculiar to Hybrid P2P architectures where a central or master node exists which contain
special information about the whole system. It is also known as the Yellow Pages service, where the
central agent or node acts as a directory of the existing resources. The system agents can consult this
directory and look for other agents that offer certain services or that fulfill certain properties. Not all
the middleware frameworks implement the lookup service. This is a fundamental characteristic for
the creation of a robust system. For example, where certain nodes cease to function or cease to offer
a particular service or functionality, the system must be able to replace these nodes by searching for
substitutes that offer similar services or functionality.

Various situations can be solved without a lookup service if every agent node has previous knowledge
of all the capacities of the remaining agents. In short, this lookup service is shown to be essential in
a dynamic situation where the services available are subject to the runtime context: energy, priority of
running tasks of each agent, physical damages in sensors, etc.

Discovery Service

This is a service that is intrinsically associated with pure P2P distributed architectures which enables
a node that offers a certain service to be found. In pure P2P architectures, a central node where the
services are registered (Yellow Pages) does not exist, which is why this information must be distributed
across the existing nodes. In other words, the discovery service is the pure distributed version of the
lookup service: it finds agents that match a specific set of characteristics. As each node can be aware
of the existence of different services offered by other nodes, a service search protocol is necessary.
This protocol is called the discovery service. It could be useful in Collective Robot Swarms, in certain
Robots working in Ambient Intelligence Environments, or in a team of heterogeneous robots. All these
applications are subject to network connectivity problems. On a hybrid P2P architecture, losing the
master node could be critical for the system.

The discovery service is a very dynamic solution when new robots must be dynamically incorporated
into a team, when connectivity problems can occur, or when the availability of robots is not ensured, due
to robot damage, energy autonomy, etc.

2.2.4 Simulation Capabilities

These permit modeling, prototyping, and simulation of the final system to be generated, thereby saving
both time and expense. They also serve as an early test of viability of the solutions, which may prevent
situations of malfunction, conflict, etc. These tools stand out for their capacity to express mathematical
concepts and for the possibility of carrying out simulations on these models, thereby obtaining results
which can be interpreted for an improvement in the system design. These tools usually offer the possi-
bility of generating graphs and also permit simulations of the robotic system in virtual worlds with rigid

Deliverable D31.11: Page 12 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

solid dynamics. Some free tools which deserve a mention include: OpenRave, Stage, UsarSIM, Gazebo,
and Breve.

2.3 Configurability

A major concern of a middleware is to support as much use-cases as possible. To facilitate this essential
features of the middleware need to be configurable in order to meet the requirements of the use-case.

2.3.1 Message format

The message format of a middleware framework determines the interoperability between different plat-
forms and languages. New formats should be easily definable, to support new components with their
specific message content without too much programming efforts. Text formats, such as YAML, JSON or
XML, can be interpreted by parsers and comprehensibly analysed, while still readable to humans. Binary
formats outperform text-formats with regards to communication bandwidth, memory and computational
requirements.

Hence the selected message format affects performance, energy consumption and introspection facilities.

2.4 Real-time capability

The majority of robotic systems have some type of real-time constraints. These restrictions are prob-
lematic in distributed software architecture. Efficiency is also a common requirement, especially when
a robotic system has limited communication and computation capacities. Hence the design of the ar-
chitecture must consider the use of software, hardware, communication mechanisms and protocols that
guarantee compliance with these restrictions.

2.5 Stability

Robotic systems are very complex systems which are developed over years. To maintain compatibility
over years stable APIs are necessary.

2.5.1 Host OS

The operating systems offer a hardware abstraction layer (HAL) that simplifies the development of
applications enormously and encourages the reuse of hardware and software. Classically, the software
architectures in robotic systems have undergone ad hoc development and the use of an operating system
has not always been necessary. Lightweight operating systems have usually been employed (RTKernel,
FreeRTOS, QNX, etc.) that are specifically adapted to the hardware and to the devices and peripherals
used. Some of the most important characteristics supporting these operating systems are multitasking
and real-time restrictions; highly interesting aspects in robotics. They also possess controllers for a
group of specific devices that allow them to access typical peripherals such as Ethernet and CAN. A
disadvantage of these systems is that they have a smaller range of off-the-shelf libraries and drivers for
devices and peripherals.

On the other hand, the middleware frameworks allow very diverse, complex robotic systems to be de-
veloped. In order to maintain reusability they need to rely on the support of a high level of abstraction

Deliverable D31.11: Page 13 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

in the Operating Systems and on a large quantity and diversity of off-the-shelf libraries and drivers for
devices and peripherals. The general-purpose operating systems which are the most highly developed in
these aspects are found in the world of PCs: Linux, Windows and OSX are some examples. As a disad-
vantage, these systems can be considered as heavyweight since they require greater hardware resources.
Nevertheless, in many cases, this does not prevent them from being able to support tasks with real-time
restrictions (RTLinux, RTAI). Sometimes a framework is supported on a Virtual Java Machine, which
allows the framework to isolate itself from the operating system since the majority of operating systems
have support for some of these VMs (Virtual Machines). A disadvantage is the loss of control of the
hardware and the physical platform; a fundamental aspect in robotics.

2.6 Reusability

2.6.1 Algorithm library

The robotic algorithms are often the objective of an middleware framework to provide generic and
reusable algorithms and functionalities in the field of robotics. Those algorithms are designed for differ-
ent levels of abstraction: from a low level, such as those related to kinematics, control, robot perception,
Bayesian estimation up to others of a high level such as planning, human interaction, robot learning,
navigation algorithms, motion planning, Bayesian Filtering, and SLAM. These abstract algorithms are
usually built over the Robotic Hardware Interfaces or other low-level robotics algorithms. This software
is usually provided in the form of libraries or components that can be instantiated as nodes of the system.

Some middleware frameworks, such as Player, do not show a clear line between these algorithms and
device drivers since both are usually wrapped behind a stable and known programming interface to
promote reutilization.

2.6.2 License

The license is a crucial factor for the success of development frameworks. There have been multitudes
of proprietors of unsuccessful frameworks in the sphere of robotics. The license is also significant in
the scope of the assessment on one hand since Open-Source projects allow an understanding of how the
framework functions, and facilitate the creation of a more powerful community, which together form a
source of new ideas. On the other hand possible license fees have an impact on the financial calculation
in the exploitation phase.

2.7 Scalability

2.7.1 Distribution

The modular nature of middleware architectures enable scalability features in terms of distribution over
multiple machines in the middleware network. One of the major scale factor of middleware frameworks
is the number of processing modules or nodes.

The node configuration of an robotic system using ROS is shown in Figure 2.

Hence, the active processing nodes and as a result the processing load of a single machine can be reduced
by extending the middleware network.

The system itself can be scaled by using multiple processing cores or processing threads.

Deliverable D31.11: Page 14 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

ROS	

Master	

ROS	

Node	
 1	

ROS	

Node	
 2	

ROS	

Node	
 n	

Registration Registration

Messages Messages

ROS middleware network

Figure 2: ROS node configuration

On the other hand the overall size of the middleware can be reduced by using a customized set of active
nodes that are required for the specific robotic system.

Deliverable D31.11: Page 15 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

3 Summary of Middleware Assessment Metrics

This chapter summarizes the metrics to assess middleware frameworks described in the previous chapters
in order to give a brief overview. The following tables include an unique metric identifier and a short
description:

• The Range of a metric corresponds to a subset that can be used as assessment criterion.

• The Target aspect refers to targeted assessment metric aspect displayed in Figure 1.

• The Importance level gives a measure of the general importance of the corresponding metric with
respect to overall assessment. It must be noted, however, that these are based on a generic design
flow. Specific design decisions might affect the level, for instance, in the case of certain licenses
to be omitted or certain programming languages to be used.

3.1 Assessment Metrics

Field Name Value

Metric ID WP31.1.1

Title Node communication mechanism

Description The node communication mechanisms can differ in range of simple mes-
sage passing between nodes to more advanced mechanisms such as ports,
topics, events, services and properties. The communication mechanisms
will influence the coupling of nodes, performance and ease of use of the
middleware framework. The node communication mechanisms include
Simple messages, Topics, Ports, Services, Events and Properties.

Range Simple messages, Topics, Ports, Services, Events, Data/Message Centric

Importance High

Assigned
Tasks/WP

Task 31.1

Target aspect Modularity

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Deliverable D31.11: Page 16 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

Field Name Value

Metric ID WP31.1.2

Title Message Transport Protocol

Description The message transport protocol is a crucial characteristic of middleware
frameworks that is also related to the communication layer. The sup-
ported transport protocols like TCP, UDP, EtherCat, CAN-open, HTTP,
SSL, CORBA will significantly change the performance of the middle-
ware framework.

Range TCP, UDP, EtherCat, CAN-open, HTTP, SSL, CORBA

Importance High

Assigned
Tasks/WP

Task 31.1

Target aspect Composability

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Field Name Value

Metric ID WP31.1.3

Title Programming Languages

Description A middleware framework can support one or multiple programming lan-
guages. On one hand the used programing language can directly influ-
ence the performance of the robotic system and should be selected to
match the operation platform performance. On the other hand it directly
influences the time required to create new software components.

Range C++, C, Python, Java, Lisp, Octave, PHP, Simulink

Importance Medium

Assigned
Tasks/WP

Task 31.1

Target aspect Composability

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Deliverable D31.11: Page 17 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

Field Name Value

Metric ID WP31.1.4

Title Services

Description Services are used to coordinate the communication between nodes. Nam-
ing Services, Lookup Services and Discovery Services provide features to
set up the data transfer. Middleware Services can be divided into Nam-
ing Service, Lookup Service and Discovery Service.

Range Naming Service, Lookup Service, Discovery Service

Importance High

Assigned
Tasks/WP

Task 31.1

Target aspect Composability

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Field Name Value

Metric ID WP31.1.5

Title Simulation Capabilities

Description These permit modeling, prototyping, and simulation of the final system
to be generated, thereby saving both time and expenses. They also serve
as an early test of viability of the solutions, which may prevent situations
of malfunction, conflict, etc. Some free tools which deserve a mention
include: OpenRave, Stage, UsarSIM, Gazebo, and Breve.

Range Yes/No

Importance Medium

Assigned
Tasks/WP

Task 31.1

Target aspect Composability

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Deliverable D31.11: Page 18 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

Field Name Value

Metric ID WP31.1.6

Title Message format

Description The message format of a middleware framework determines the interop-
erability between different platforms and languages. New formats should
be easily definable, to support new components with their specific mes-
sage content without too much programming efforts.

Range XML, RDF, Java serialization, custom format

Importance Medium

Assigned
Tasks/WP

Task 31.1

Target aspect Configurability

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Field Name Value

Metric ID WP31.1.7

Title Real-time capabilities

Description The majority of robotic systems have some type of real-time constraints.
These restrictions are problematic in distributed software architecture.
Efficiency is also a common requirement, especially when a robotic sys-
tem has limited communication and computation capacities. Hence the
design of the architecture must consider the use of software, hardware,
communication mechanisms and protocols that guarantee compliance
with these restrictions.

Range Yes/No

Importance Medium

Assigned
Tasks/WP

Task 31.1

Target aspect Real-time capability

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Deliverable D31.11: Page 19 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

Field Name Value

Metric ID WP31.1.8

Title Host OS

Description The operating systems offer a hardware abstraction layer (HAL) that
simplifies the development of applications enormously and encourages
the reuse of hardware and software. Classically, software architectures
in robotic systems have undergone ad hoc development and the use of
an operating system has not always been necessary. General-purpose
operating systems which are the most highly developed in these aspects
are found in the world of PCs: Linux, Windows and OSX are some
examples. As a disadvantage, these systems can be considered as heavy-
weight since they require greater hardware resources. Nevertheless, in
many cases, this does not prevent them from being able to support tasks
with real-time restrictions (RTLinux, RTAI).

Range Windows, Linux, OS X, RTAI, Xenomai,RTEMS, µC/OSII

Importance Medium

Assigned
Tasks/WP

Task 31.1

Target aspect Stability

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Field Name Value

Metric ID WP31.1.9

Title Algorithm library

Description Robotic algorithms are often the objective of an middleware framework
to provide generic and reusable algorithms and functionalities in the
field of robotics. Those algorithms are designed for at different levels of
abstraction: from a low level, such as those related to kinematics, control,
robot perception, Bayesian estimation up to others of a high level such
as planning, human interaction, robot learning, navigation algorithms,
motion planning, Bayesian Filtering, and SLAM.

Range Small/Medium/Large

Importance Medium

Assigned
Tasks/WP

Task 31.1

Target aspect Reusability

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Deliverable D31.11: Page 20 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

Field Name Value

Metric ID WP31.1.10

Title License

Description The license is a crucial factor for the success of development frameworks.
There have been multitudes of proprietors of unsuccessful frameworks
in the sphere of robotics. The license is also significant in the scope of
the assessment on one hand since Open-Source projects allow an under-
standing of how the framework functions, and facilitate the creation of
a more powerful community, which together form a source of new ideas.
On the other hand possible license fees have an impact on the financial
calculation in the exploitation phase.

Range LGPL, GPL2, BSD, proprietary

Importance Low

Assigned
Tasks/WP

Task 31.1

Target aspect Reusability

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Field Name Value

Metric ID WP31.1.11

Title Distribution

Description The modular nature of middleware architectures enable scalability fea-
tures in terms of distribution over multiple machines in the middleware
network. One of the major scale factor of middleware frameworks is the
number of processing modules or nodes.

Range Yes, No, max. number of nodes

Importance Medium

Assigned
Tasks/WP

Task 31.1

Target aspect Scalability

Responsibility
and Reference
Person

Viatcheslav Tretyakov (SYN), Sönke Michalik, Jan Wagner (TUBS)

Deliverable D31.11: Page 21 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

ARTEMIS-2013 Project Deliverable R5-COP

References

[1] Simone Ceriani and Martino Migliavacca. Middleware in robotics.
Advanced Methods of Information Technology for Autonomous Robotics, Internal Report on.
http://home.deib.polimi.it/gini/AdvancedRobotics/docs/CerianiMigliavacca.

pdf.

[2] Pablo Iñigo Blasco, Fernando Diaz-del Rio, Ma Carmen Romero-Ternero, Daniel Cagigas-Muñiz,
and Saturnino Vicente-Diaz. Robotics Software Frameworks for Multi-agent Robotic Systems De-
velopment. Robot. Auton. Syst., 60(6):803–821, June 2012.

Deliverable D31.11: Page 22 of 22

D
R
A
FT

IN
T
ER

N
A
L

R
EV

IE
W

PEN
D
IN

G

http://home.deib.polimi.it/gini/AdvancedRobotics/docs/CerianiMigliavacca.pdf
http://home.deib.polimi.it/gini/AdvancedRobotics/docs/CerianiMigliavacca.pdf

	Cover page
	Document History
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Summary (abstract)
	Purpose of this document
	Partners involved

	Middleware Assessment Metrics
	Modularity
	Node Communication Mechanisms

	Composability
	Message Transport Protocol
	Programming languages
	Communication Services
	Simulation Capabilities

	Configurability
	Message format

	Real-time capability
	Stability
	Host OS

	Reusability
	Algorithm library
	License

	Scalability
	Distribution

	Summary of Middleware Assessment Metrics
	Assessment Metrics

